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Abstract—In recent times, embodied AI has witnessed signif-
icant progress in single-source audio-visual navigation, which
tasks an agent to reach the only audio source in an unknown
environment by relying on audio and visual cues. In this work,
we further generalize this setting and introduce the task of
semantic audio-visual navigation, in which the agent is instead
tasked to navigate to the audio source of a certain semantic
class while there are other sources of different classes playing
in the environment at the same time. We propose two unique
approaches to solve this task, both of which rely on the
principle of extracting the target audio from the mixed audio
and thus effectively silencing the distractor sources for accurate
and efficient navigation. One of the approaches does implicit
extraction by learning disentangled latent features for navigation
that are conditioned on the audio classes in the mixture. The other
approach extracts the target audio more explicitly by using an
additional class-conditional extraction module. We demonstrate
our approaches on Replica, a challenging dataset of real-world
3D scans. Our approaches improve over the current end-to-end
reinforcement learning based state-of-the-art audio-visual naviga-
tion agent that is customized to account for audio semantics, in
multiple challenging evaluation settings, thus demonstrating the
effectiveness of target audio extraction based agents for successful
navigation in multi-audio settings. Project slides with navigation
videos: https://bit.ly/semanticAudioNavigation∗

I. INTRODUCTION

Accurate and efficient navigation to a target is often a first
important step in an embodied agent’s process of solving a
certain downstream task. For example, a bomb detonating
robot will have to first reach the location of the bomb
before proceeding to detonate it. End-to-end training of such
navigation agents with egocentric image inputs and without
the use of an explicit geometric map for motion planning in a
3D environment [18, 19, 41, 32] has shown a lot of promise
recently. The development of high-quality simulators with
realistic rendering abilities has further helped research in this
direction by trying to narrow the Sim2Real gap [18, 34, 8, 46].

Although photorealistic RGB and/or depth images can often
provide rich navigation cues, they are highly local in nature,
and can also be unreliable in low-light and high-occlusion
situations. Besides, humans often use multi-modal sensory
data (vision, sound, or smell) to compensate for the low or
insufficient fidelity of one or more of the sensory streams.
Further, human navigation also doesn’t depend on an external

∗Please view the slides by signing in using a Google account to play the
videos.

Fig. 1: Semantic AudioGoal Navigation. An agent is tasked
with navigating to an audio source of a certain semantic class
while there are other sources, each of a different class other than
the target class, playing in the 3D environment. For successful
navigation, the agent must strictly follow the target audio cue
while shutting out the distractor audio sources.

explicit directional signal like GPS which is very widely used
currently for robot navigation but can be very weak or even
absent in real-world indoor environments. To that end, [9,
15] recently studied the problem of audio-visual navigation
(AudioGoal) where an agent is tasked with finding an audio
source by just relying on egocentric visual and binaural audio
inputs. [10] improves upon [9, 15] by hierarchically predicting
intermediate navigation waypoints of auto-adaptive granularity
in an end-to-end fashion, and using a geometric-mapper and
an analytical planner to reach the waypoints. Further, [10]
shows the benefit of maintaining an explicit acoustic memory
to improve navigation performance.

Despite being realistic in terms of audio and visual ren-
dering, [15, 9, 10] essentially suffer from the over-simplistic
assumption that there is a single audio source in the envi-
ronment that’s at worst corrupted by microphone noise. A
more likely scenario in a live indoor setting is one where an
autonomous agent often has to deal with a mixture of sounds
from multiple sources and has to robustly navigate to a specific
source while being able to ignore the distractors. This aspect
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of realism adds to the complexity of the vanilla AudioGoal
task by requiring the navigation agent to implicitly or explicitly
extract the target audio from the mixture on the basis of some
given acoustic attribute(s) and use it as the cue for navigation.

In this report, we aim to study one such realistic setting,
where the attribute of choice is the semantic class of the
audio target, and introduce the task of semantic audio-visual
navigation (Semantic AudioGoal). In simpler terms, we consider
the scenario where there are multiple audio sources, each of a
different semantic class, playing in the environment and the
agent is supposed to navigate to the source of a certain class
where the class label could be an input from a human user (see
Figure 1). A simple approach to this problem is to augment the
input space of one of the single-source (in this context and all
our discussions henceforth, single-source means that there is
one dominant audio source in the environment and has nothing
to do with the number of sources the agent is supposed to
navigate to) navigation methods proposed in [15, 9, 10] with
the class label and expect it to identify and extract the target
audio on its own for navigation. However, our experiments
show that such a minor modification results in low navigation
performance, thus highlighting an increase in task complexity
in comparison to the vanilla AudioGoal task.

We propose two multi-modal deep reinforcement learning
(RL) approaches to this task. In our first approach, we design
an end-to-end RL agent that takes egocentric visual and
mixed audio inputs and learns a disentangled latent feature
representation of them that is conditioned on the audio classes
present in the mixture. Such latent disentanglement allows the
agent to implicitly identify and extract only those features that
correspond to the target audio class, and use them for navigation.
Our second approach involves the use of a separate class-
conditional audio extraction module that explicitly extracts
the audio corresponding to the target class from the mixed
audio before feeding it to the RL-based navigation policy. Such
explicit extraction, if perfectly done, practically converts the
mixed-audio navigation task into clean single-source navigation,
thus freeing up the navigation policy network for learning only
navigation-specific features and providing the flexibility of
using any off-the-shelf single-source audio navigation policy.

For our experiments, we use certain commonly-occurring
indoor audio and their class labels from the the Environmental
Sound Classification (ESC-50) [37] dataset. We extend the
SoundSpaces [9] audio simulation platform for scanned real-
world 3D environments in the Replica [48] dataset with the
ESC-50 audio data for rendering mixtures of audio from
two or more of these classes. Our results show that both
our implicit disentanglement-based and explicit target-audio
extraction approaches outperform naive heuristical baselines
that don’t have access to the ground-truth target location but
have the ability to stop perfectly, and a state-of-the-art end-to-
end RL based AudioGoal navigation method that is modified
to take the target audio class as input, on both heard and
unheard sounds even when the number of total sound sources
is increased from 2 to 3. The performance gains of our proposed
methods are larger for heard sounds – 4 to 23 points on heard

against 2 to 8 points on unheard. Furthermore, we qualitatively
compare trajectories of our proposed navigation methods with
those of the modified state-of-the-art AudioGoal navigation
method, and also discuss some common failure cases for our
methods. Finally, we visualize the learned latent features in our
disentanglement-based approach that interestingly shows some
correlation between the clusters and classes of audio present
in the mixture.

II. RELATED WORK

A. Learning to navigate in 3D environments

Most of the initial works on robot navigation have heavily
relied on simultaneous localization and mapping (SLAM)
approaches that involve the continuous building of a geometric
map of the agent’s 3D environment, the estimation of the
agent’s pose with respect to that map, and eventually planning
the path to a certain goal location in the map [49, 14].
Recent advances in deep learning, however, have made it
feasible to learn implicit state representations and end-to-
end navigation policies directly from the egocentric RGB(D)
images [18, 19, 32, 41]. However, a large number of these
works tackle the PointGoal task where the main assumption is
that the agent has access to a 2D displacement vector to the
target location in the form of a GPS signal [18, 32, 8, 42, 43].

On the other hand, in ObjectGoal navigation the agent is
tasked with navigating to a target of a certain semantic class
instead of a specific location in its 3D environment. In particular,
navigation is considered successful if the agent is able to reach
the nearest instance of the given object class label [58, 3, 55,
33, 54, 7, 6].

The recently proposed AudioGoal task also attempts to
loosen the assumption that the agent has continuous access to
PointGoal inputs, and introduces the notion of using audio as
the navigation cue instead. Specifically, the agent instead hears
an audio in addition to input from its other image sensors, and
has to navigate to the location of the audio source [9, 15, 10].

Our proposed Semantic AudioGoal task extends the vanilla
AudioGoal navigation task by adding audio semantics to it. The
agent is now tasked with navigating to a specific audio class
while hearing a mixture of audio of different classes placed
around the environment. Besides, in contrast to ObjectGoal
navigation, in our setup there is at most one source from every
audio class in the environment and the agent’s navigation is
considered successful if and only if it’s able to reach the only
source for the target class that’s present in the environment.

B. Audio source localization

Sound source localization in robotics is mostly achieved
using microphone arrays [35, 39], and active control is often
used to improve the localization [36, 52]. Prior work has shown
that audio signals can be used to infer partial geometric and
spatial information about the environment [13, 16]. Audio-
visual signals have also been used previously for several tasks,
such as surveillance [53, 38], speech recognition [56], and most
recently, robot navigation [9]. Moreover, sound sources in the
presence of distractor sounds have been accurately localized



in 2D video frames by leveraging audio-visual association
cues [20, 2]. In our proposed task of Semantic AudioGoal
Navigation, the agents have no explicit supervision to localize
the target sound source. Instead, they have to build an implicit
understanding of the location of the target audio type from a
mixture of different types for successful navigation.

C. Audio-only source separation

Audio source separation is an extensively studied problem in
classical signal processing. One approach to solve it is to use
multiple microphones to capture directional cues of different
sources that are important for separation. Another way to tackle
it is to do “blind” separation of monaural audio [23, 50, 25, 51],
most recently with deep learning [23, 21, 47]. Mix-and-separate
style training [57, 24, 21] is also commonly used nowadays to
augment training data for improving separation performance.
Instead of doing separation, one of our proposed approaches
tries to do class-conditional extraction of the target audio.
The alternate disentanglement-based approach separates mixed
audio in the sense that it disentangles audio features but it does
so inside the latent embeddings in an implicit fashion.

D. Disentangled representation learning

Disentangled feature representations in deep learning models
are often known to be more interpretable or semantically
meaningful [12, 28] and more generalizable [45]. Most of
these approaches are unsupervised in nature and based on
variational auto-encoders (VAEs) [27] or generative adversarial
networks (GANs) [17].

VAEs tend to dominate the disentanglement landscape
because of better training stability. While some of the VAE-
based approaches tackle the problem from the persepctive of
limiting the bottleneck capacity [22, 5], others penalize the total
correlation [26, 11] or match factorized priors [28]. However,
all of these works attribute disentanglement to factorizing the
distribution of representations [26, 11, 30, 29].

Among GANs, InfoGAN [12] penalizes the mutual in-
formation of representations, and qualitatively shows that
different factors in representations correspond to different visual
concepts. The authors in [4] propose to penalize the Jensen-
Shannon divergence between the distribution of representations
and its factorized distribution with a discriminator, based on
Independent Component Analysis.

Unlike these unsupervised disentanglement methods, our
disentanglement-based implicit audio extraction approach is
fully supervised in nature. It draws motivation from bottleneck-
constriction in VAEs and conditions its factorization of latent
features on the audio classes present in the mixed audio input to
the agent by using a class-conditional supervised regularization
loss during training.

III. AUDIO-VISUAL SIMULATION

We build on top of the publicly available AI-Habitat [31]
based SoundSpaces audio-visual simulation platform for our
Semantic AudioGoal task. Specifically, we use SoundSpaces for
the Replica dataset of real-world 3D scans. Replica consists of

Fig. 2: Audio simulation in SoundSpaces [9]. This shows the
audio pressure fields, shown using a heatmap with the pressure
being higher at redder locations than at bluer locations, at a
densely sampled grid inside ’FRL apartment 0’ in Replica when
the sound source is at the center of the room. At each grid
point, the agent hears a binaural audio that captures the source’s
local intensity, direction of arrival and frequency texture.

18 environment meshes constructed from scans of apartments,
hotels, rooms and offices. The simulation generates realistic
and real-time audio-visual observations as a navigation agent
traverses these 3D environments. While the realism and high
fidelity of the egocentric visual images arise from the Replica
data being dense scans of real-world scenes, the state-of-the-
art spatial audio renderings leverage room impulse responses
(RIR) that capture how sound propagates and interacts with the
surrounding geometry and surface materials, modeling all of the
major acoustic phenomena: direct sound, early specular/diffuse
reflections, reverberation, binaural spatialization, and frequency
dependent effects from materials and air absorption (see [9]
for more details).

For adding audio semantics to this simulation setup, we
take monaural audio clips from the public ESC-50 dataset.
In particular, we look at 10 indoor audio classes: 1) vacuum
cleaner, 2) door wood knock, 3) can opening, 4) mouse click, 5)
clock alarm, 6) keyboard typing, 7) glass breaking, 8) washing
machine, 9) clock tick and 10) door wood creaks. The original
ESC-50 dataset has 40 audio clips per class and each clip is
5 seconds long. We sample a 1 second chunk from each 5
second clip by using a sliding-window approach that ensures
that the energy of the chosen window is not below a certain
threshold. The energy threshold is enforced so that it has
enough discernible features for a human listener to listen to it
and agree on the class label that’s been originally assigned to
it. The chosen threshold for every clip is the average energy
of the whole clip. However, we discard a few 1 second audio
chunks after manually listening to them because of lack of
class-specific information in them. This step reduces the total
number of audio samples in our dataset from 400 (40 clips
per class and 10 classes chosen in total) to 387. Finally, we
resample all monoaural chunks, which are originally at 44.1



Fig. 3: Class-conditional latent disentanglement: our implicit audio extraction based navigation approach that disentangles
the latent features in the policy into subsets where each subset corresponds to a different audio class and only the subsets
corresponding the classes present in the audio mixture are active during navigation. Such disentanglement allows for using only
the features for the target class to to navigate accurately and efficiently.

kHz, at 16 kHz and normalize them so that they have the same
energy value. The chosen value is the average energy of the
resampled audio chunks before normalization.

Next, we take this preprocessed monaural audio and generate
navigation episodes for training and evaluation. We consider
two scenarios: one where all the sounds in evaluation have
been heard during training, henceforth referred to as heard
sounds, and the other where there is no overlap of sounds
among the training, validation and testing episodes but all the
audio classes are shared, henceforth referred to as unheard
sounds. For unheard sounds, we split the audio data in each
category in the training/validation/testing ratio of 8:1:1. We
modify the navigation episode definition in [9] by replacing
the single audio source in every episode with two or more
sources where each source is from a different audio class. We
also enforce a constraint on the spatial positioning of the audio
sources: the Euclidean distance for every source-source pair
and agent-source pair at the start of navigation is at least 1.5
meters. This is to make sure that the agent doesn’t fail to hear
the target sound during its initial steps or when it gets very
close to the target source. Furthermore, the modified episode
also contains the class label of the target audio source. For
every episode, the simulation times out after 500 navigation
steps, which is a configurable parameter, and the agent is reset
to start a new episode.

For rendering mixed audio at every navigation step, we
generate binaural waveforms by convolving the monaural
waveform of each source with the RIR for that source at the
agent’s current pose, take a mean over the individual binaural
waveforms and convert the mean to a spectrogram using the
short time Fourier transform (STFT). For more details on

spectrogram computation, refer to section I in Supp.
The simulator maintains a navigability graph of the environ-

ment (unknown to the agent). The agent can only move from
one node to another if there is an edge connecting them and
the agent is facing that direction. The action space A has four
actions: MoveForward, TurnLeft, TurnRight and Stop,
where a successful MoveForward takes the agent forward by
0.5 meter. The step size is the result of the spatially-discrete
audio simulation in SoundSpaces (see Figure 2 for an example).

IV. APPROACH

We propose two unique deep RL based approaches specific to
the Semantic AudioGoal task. Both our methods are motivated
by the need to extract the target audio from the mixture either
implicitly or explicitly for the agent to navigate accurately and
efficiently. The first approach involves implicit extraction of
target audio in the form of class-specific disentangled latent
feature representation. The other approach does more explicit
extraction of it by using an audio extraction component that
tries to predict the audio spectrogram for the target class while
taking the mixed audio as input.

Despite these differences, the navigation policies used by the
approaches are inspired by the actor-critic architecture proposed
in [9] and have many elements in common. For visual and
acoustic perception, they take the agent’s first-person RGB
view and a binaural audio spectrogram as inputs and encode
them using separate CNNs into two feature vectors, fV (V ) and
fA(A) respectively. fV (V ) and fA(A) are then concatenated
and fed into a GRU that acts as a memory for navigation and
aggregates the audio-visual features over time. Depending on



Fig. 4: Class-conditional target audio extraction: our other proposed approach that explicitly extracts the target audio from
the mixture by using an encoder-decoder architecture. The extraction module is pre-trained and frozen during navigation policy
learning.

the approach, the output of the GRU (ht) is either directly
or indirectly fed into the actor and the critic networks that
respectively predict the next action and the value of the current
agent state. See section IIA in Supp. for architectural details
of our navigation policy.

Following typical navigation reward defintions [42, 9, 10],
we reward the agents with +10 if it succeeds in reaching the
goal and executing the Stop action there, plus an additional
reward of +0.25 for reducing the geodesic distance to the
goal and an equivalent penalty for increasing it. Finally, we
issue a time penalty of 0.01 per executed action to encourage
efficiency.

While the policy in the explicit extraction based approach
is trained using the proximal policy optimization (PPO) [44]
algorithm, the training loss for the other approach includes
a loss for enforcing latent disentanglement in addition to the
action, value and entropy losses in the vanilla PPO algorithm.
The PPO updates are done after every 150 navigation steps for
both the policies. See section IIB in Supp. for more details on
policy training.

Next, we discuss in detail the main differences between the
two approaches and their training.

A. Class-conditional latent disentanglement

The core idea behind this method is to leverage class-
conditional sparsity in learned latent features for enforcing
their disentanglement into class-specific subsets so that only
the features corresponding to the target class can be used for
accurate navigation. In other words, we modify the end-to-end
deep RL based navigation policy, discussed above, so that the
temporally aggregated audio-visual feature output from the
GRU of the policy can be split into subsets where each subset
is of the same size and corresponds to one audio class in the
dataset, and the subsets corresponding to all classes absent in
the current audio mixture take all-zero values when trained
perfectly (see Figure 3). To achieve this sparsity, we regularize
the GRU output (ht) by masking it with a binary vector b in

which all the indices corresponding to the classes present in
the mixture are 0 and the rest are 1, and adding the weighted
l2-norm of the masked vector to the PPO training loss. The
modified training loss can be written as follows:

Ltraining = LPPO + α ∗ ||ht � b||22 (1)

where α is the weight for the regularization loss. Next, these
sparse features are masked using the class label of the target
audio so that only the feature subset corresponding to the target
class can be implicitly extracted and fed into the actor and the
critic of the policy.

B. Class-conditional target audio extraction

In this method, we explicitly extract the audio corresponding
to the target class from the audio mixture and feed it to the
audio encoder of our navigation policy. The extractor module
uses a U-net [40] backbone that takes the spectrogram of the
mixed binaural audio concatenated with a single channel of the
target audio’s integer class-label as input and predicts a ratio
mask of the spectrogram of the target binaural (see Figure 4).
The final output of the extractor is an element-wise product
of the predicted ratio mask and the mixed audio spectrogram,
which represents the module’s estimate of the target audio
spectrogram. The extractor is pre-trained with the mean-squared
error (MSE) loss between the target audio spectrogram ground-
truth and the estimate, and kept frozen during policy training.
For this pre-training, we build a dataset of audio source and
receiver locations that are randomly sampled from Replica
training environments while obeying the inter-source minimum
Eucliean distance criterion of 1.5 meters. For more details on
the extractor architecture and the pre-training dataset, refer to
section III in Supp.

V. EXPERIMENTS

A. Environment

We train and evaluate our proposed approaches in the 3D en-
vironments of Replica using our extension of the SoundSpaces



2 sources 3 sources
Heard Unheard Heard Unheard

Model SPL↑ SR↑ SNA↑ SPL↑ SR↑ SNA↑ SPL↑ SR↑ SNA↑ SPL↑ SR↑ SNA↑
Random w/ perfect stopping 5.3 20.8 1.8 5.3 20.8 1.8 5.3 20.8 1.8 5.3 20.8 1.8
Move forward w/ perfect stopping 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Modified Chen and Jain et al. 7.8 13.0 3.1 4.3 7.2 1.7 2.2 4.6 0.8 2.2 4.0 0.9

Class-conditional latent disentangler 12.8 22.5 4.6 8.8 15.6 3.3 6.1 10.6 2.5 4.3 8.4 1.7
Class-conditional audio extractor 30.5 53.5 12.4 12.7 23.1 4.9 26.4 44.8 10.3 6.5 12.8 2.2

TABLE I: Semantic AudioGoal navigation results. Our proposed navigation approaches (bottom 2 rows) outperform naive
heuristical baselines that can stop perfectly, and a state-of-the-art end-to-end RL based AudioGoal navigation agent that’s
been customized for the Semantic AudioGoal task, on important navigation metrics like SPL and SNA in multiple challenging
evaluation settings. All metrics are reported as percentages and for all of them, higher is better. All values are statistically
significant with the maximum standard deviation being less than 0.4% across 3 different random seeds.

audio rendering platform and AI-Habitat simulator. We follow
the SoundSpaces AudioGoal protocol with train/val/test splits
of 9/4/5 scenes on Replica. Note that these splits are completely
disjoint in nature. We do two sets of experiments: one where
every navigation episode has 2 sound sources and the other
where every episode has 3 sound sources placed in the
environment. For both sets, we evaluate with both heard and
unheard sounds. Finally, the number of episodes in training,
validation and testing are 109676, 500 and 1000 respectively
in all our experiments.

B. Evaluation metrics

In all our experiments, we use the following metrics for
evaluating navigation performance: 1) success rate (SR) – the
fraction of episodes in which the agent has stopped exactly at
the target source, 2) success weighted by path length (SPL)
– the standard metric [1] that weights successes in individual
episodes by the ratio of the length of the shortest geodesic path
from the agent’s starting location to the target and that of the
path actually traversed by the agent, and 3) success weighted
by number of actions (SNA) – a recently introduced navigation
metric [10] that weights successes with the ratio of the optimal
number of actions and the actual number of actions taken by
the agent in its trajectory, thus also penalizing in-place-rotations
in addition to redundant MoveForward actions.

C. Existing methods and baselines

We compare our proposed approaches with the following
methods:
– Random w/ perfect stopping: this is a naive heuristical
baseline that executes a random action from the action-
space A′ : {MoveForward, TurnLeft, TurnRight} until
it reaches the target location in which case it always takes the
Stop action perfectly.
– Move forward w/ perfect stopping: this is another heuristi-
cal baseline that always takes the MoveForward action until
it reaches the target location in which case it always takes the
Stop action perfectly.
– Modified Chen and Jain et al. (2020): this is a state-of-
the-art end-to-end RL based audio-visual navigation agent

introduced in [10] that we modify by augmenting the spectro-
gram input to the model’s audio encoder by adding an extra
channel that stores the integer class label of the target audio
source. This method is also trained with PPO like our proposed
methods. For architectural and training details of this approach,
we point the reader to section II in Supp.

For a fair comparison, we make certain architectural choices
so that both our approaches and the modified Chen and Jain et
al. model have approximately similar representation capacity in
terms of the number of learnable features (see Supp. section II).
Also note that both our naive heuristical baselines have access to
the privileged information of ground-truth goal location, which
neither modified Chen and Jain et al. nor our approaches have.
Perfect stopping is needed for the naive baselines or else they
always give 0 performance consistently across all evaluation
metrics for multiple random seeds.

D. Navigation results

Table I lists our results with 2 and 3 sound sources with
both heard and unheard sounds, where the bottom two rows
show the results for our proposed approaches. We reiterate
that for unheard sounds, there is no overlap among the sound
samples in training, validation and testing splits while all the
sound categories are shared. Further, for all our experiments,
there is no overlap of Replica environments among the training
and evaluation splits.

Among the heuristical baselines, random with perfect stop-
ping does decently well mostly because of its knowledge
of the exact target location and partially due to the small
size of Replica scenes, especially the rooms and hotels. The
other privileged MoveForward baseline gives 0 scores on all
metrics even though it can also stop perfectly. That’s because
of the highly non-linear and complex nature of the ground-truth
trajectories that either make the MoveForward agent collide
very frequently with surrounding obstacles, go completely in
the wrong direction or both. The modified Chen and Jain et
al. agent suffers a very large drop in performance from the
vanilla AudioGoal setting (refer to [10] for the exact numbers)
even though it has access to the target audio class label and
in principle, it should be able to learn an association between
the given class label and the correct set of actions through



(a) Modified Chen et al. (b) Class-conditional latent disentangler (c) Class-conditional audio extractor

Fig. 5: Navigation behaviors of the modified Chen et al. model and our approaches. While the modified Chen et al. agent
is unable to follow the target audio because of its inability to learn the target-class to source association and ends up moving
towards a wrong source. Our latent disentanglement based agent initially moves in the right direction but suffers from bad
implicit extraction of the target audio when the distractor sound gets louder. On the other hand, explicit target audio extraction
helps our other agent to successfully reach the target.

RL training. Figure 5a shows an example 2-source scenario
in which this agent is unable to use the target audio as the
navigation cue and ends up moving towards the source of the
other class. These point to the very high complexity of the
Semantical AudioGoal task and justifies the need to design
task-specific agents for solving it.

Our class-conditional latent disentanglement based approach
outperforms the modified Chen and Jain et al. model on all
metrics in all 4 evaluation settings. The performance gains are
larger for 2 sources and for heard sounds – for SPL, there is a
5 point gain on heard versus a 4.5 point gain on unheard with
2 sources, and a 3.9 point gain on heard versus a 2.1 point
gain on unheard with 3 sources. Besides, the disentangler gets
higher SPL scores than the privileged random on all settings
except the one with 3 sources and unheard sounds. This implies
that although the random baseline has a very high success rate
due to its ability to perfectly stop, especially in smaller scenes,
the disentangler is more efficient in terms of navigation. In the
same example episode as the one shown in 5a, the disentangler

is able to initially navigate very close to the target but fails
to stop at the right location, possibly due to its inability to
implicitly extract the target audio when the distractor audio
becomes stronger (see Figure 5b).

Our other proposed approach that does class-conditional
target audio extraction beats all other models on the SPL and
SNA metrics in all 4 evaluation settings. While the smallest
SPL gain over the next best model is 1 point (unheard with 3
sources where the next best is the random agent), the highest
gain is as large as 20.3 SPL points (for heard with 3 sources
where the disentangler is the next best performer). On the SR
metric, the extractor is not able to beat the random agent on
the only 1 setting – unheard sounds with 3 sources. Although
this could be attributed to perfect stopping in the random
agent, the pre-trained extractor module doesn’t generalize very
well to unheard sounds and might be partially responsible
for the worse navigation performance of this approach on
unheard sounds in comparison to heard sounds. However, the
overall highly promising performance of our extraction-based

(a) Difficulty in stopping correctly (b) Excessive backtracking and in-place
rotations

Fig. 6: Common failure cases in our proposed methods. The two most common failure cases in our proposed methods
arise either from the agent’s inability to stop correctly owing to its over-reliance on misleading audio cues near the target for
stopping, or excessively reactive action-taking i.e. very frequent backtracking and in-place rotations.



keyboard typing, door wood knock
glass breaking, can opening
door wood creaks, door wood knock
keyboard typing, clock tick
vacuum cleaner, washing machine

vacuum cleaner, mouse click
vacuum cleaner, clock tick
vacuum cleaner, keyboard typing
clock tick, door wood creaks
glass breaking, door wood knock

Fig. 7: Visualization of disentangled features. Latent features
of our disentanglement based approach when visualized using
2D tSNE projections tend to show some clustering on the basis
of the audio classes present in the audio mixture, thus hinting
at partially successful latent disentanglement.

approach in comparison to the other methods demonstrates how
explicit extraction of the target audio can make navigation more
accurate and efficient by practically converting mixed-audio
navigation into noisy single-source navigation at worst. One
such example is shown in Figure 5c where the extraction-based
agent successfully reaches the target while silencing out the
distractor sound even though the distractor gets louder as the
agent nears the target.

E. Cases of unsuccessful navigation

We manually look at navigation trajectories of our proposed
agents and identify two very common fault types. In one, the
agent is able to navigate very close (within one grid step) to
the target but is not able to stop at the right location. This
happens due to the near-uniform audio field at locations very
close to the target and the lack of embodiment of the target
in the simulation setup, which denies the agent the ability to
use a visual cue for stopping when the audio cue becomes
misleading. We show one such example episode in Figure 6a.

In the other failure type, the agent goes in wrong directions,
backtracks or does in-place rotations a lot until the episode
times out. Although, in a few such cases, the agent’s general
motion direction is towards the target, the highly reactive
decision making prevents it from successful navigation. Such a
behavior arises mostly from the agent’s inability to plan long-
term due to the complex nature of the task and the navigation
environments. See Figure 6b for an example.

F. Class-conditional disentangled embeddings

To understand the extent of disentanglement in the learned
latent features of our disentanglement-based approach, we

evaluate the model on our test split with 2 sound sources and
both heard and unheard sounds, and collect the GRU feature
outputs of the model (ht in Figure 3) at every navigation
step. These features are originally 640-dimensional and for
effective visualization, we embed them in 2 dimensions using
t-SNE . While a maximum of

(
10
2

)
= 90 pairs are possible

with 10 audio classes in the dataset in total, 2 sources in each
episode and a different class at each source, this particular
evaluation setup has 88 audio-class pairs in total. For the
sake of clarity, we randomly sample 10 class-pairs from the
total of 88 and show their 2D plot in Figure 7. Although
the embedding doesn’t show perfect disentanglement of the
features, it reflects some correlation between the spatial location
of the features and the corresponding class-pair in the mixed
audio. Particularly, the class-pairs – {(door wood creaks, door
wood knocks); (keyboard typing, clock tick); (vacuum cleaner,
vacuum machine); (vacuum cleaner, clock tick); (glass breaking,
door wood knock)} – tend to show spatially-localized clustering
to a certain extent.

The imperfect nature of clustering helps us identify one flaw
in our model design for the disentanglement-based approach.
Our current model tries to disentangle the GRU output that,
in addition to acoustic information, has visual and temporal
information, which are not necessarily from distributions that
can be factorized on the basis of audio class. A better alternative
could be to disentangle the feature output of the audio encoder
(fA(A) in Figure 3) that only has features of the mixed audio.
This change might also bring about an improvement in the
navigation performance of the model.

VI. CONCLUSION

We introduced a new audio-visual navigation task where an
embodied agent is tasked with navigating to an audio source
of a given semantic class when multiple audio sources, each of
a different class other than the target class, are playing around
the environment. To solve this task, we also propose two novel
techniques that try to either explicitly or implicitly extract
the target audio from the mixed audio input for navigating
accurately and efficiently. Our methods improve over a current
state-of-the-art end-to-end reinforcement learning based single-
source audio-visual navigation agent that has been customized
for our proposed task, and our analysis shows the direct impact
of the new technical contributions. In future work, we plan
to address the existing issues with our proposed approaches,
namely overfitting to heard sounds during pre-training of the
extractor module of our explicit extraction based approach and
trying to do class-conditional disentanglement of temporally-
aggregated audio-visual features instead of pure audio features.
We also hope to extend our simulation setup and proposed
methods to settings in which the audio sources are placed at
semantically meaningful locations in the environment instead
of random locations, are more realistic in that they are time-
varying in nature, and play only sporadically and not for the
whole duration of the agent’s navigation.
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