
SRoCE: Software RDMA over Commodity Ethernet
Shailesh Mani Pandey

The University of Texas at Austin
shailesh.pandey@utexas.edu

Rajath Shashidhara
The University of Texas at Austin

rajaths@cs.utexas.edu

ABSTRACT
RDMA networks are used in datacenters and high perfor-
mance computing clusters to support high-throughput, low-
latency networking by allowing specialized hardware to di-
rectly copy to and from the application memory and network.
We propose a software-based flexible RDMA verbs imple-
mentation that uses TAS - high-performance user-space TCP
stack - as the underlying transport layer to allow similar
semantics without hardware and network requirements. We
discuss the design space that we explore and evaluate our
prototype. The single-connection throughput and latency
achieved by our implementation indicate not only that pro-
viding RDMA interface over TCP using commodity NICs is
feasible but also comparable to the hardware implementa-
tion.

1 INTRODUCTION
Remote Direct Memory Access (RDMA) networks are used
in datacenters and high-performance computing clusters to
support high-throughput, low-latency networking. This is
achieved by allowing the RDMA hardware to bypass the op-
erating system and to directly copy from the memory of one
computer to another computer. This approach reduces the
overheads involved with context switches, packet processing
in the kernel stack and frees up the CPUs from being directly
involved in data transfer. Furthermore, RDMA programming
model supports one-sided communication primitives with
asynchronous data transfer semantics which enables the
application to hide the latency of I/O by overlapping compu-
tation with communication. Several RDMA based products
have been developed and marketed around the RDMA pro-
gramming model to accelerate supercomputers, cloud stor-
age, machine learning applications and datacenter networks.

In order for this to be efficient, typically the protocol stack
(Transport/Network/Link layer) is implemented in hardware
rNICs. There are several issues with this approach:

(1) Specialized hardware is expensive. Commodity hard-
ware is preferred for large-scale deployments such as
datacenters. Commodity hardware is easier to acquire
in bulk, have more frequent refresh cycles and are eas-
ier to maintain - do not require specialized training
for system administrators. In addition, older versions
of RDMA were incompatible with Ethernet networks

and required specialized Infiniband transport. Com-
mon traffic monitoring and management tools are in-
compatible with specialized NICs.

(2) Protocol stack is ossified in hardware and is difficult
to customize. This restricts the evolution of network
protocols and hinders deployment of recent advance-
ments such as software-defined networking [8] and
programmable dataplanes [2]. Furthermore, hardware
bugs in rNICs have caused significant deployment is-
sues as seen in [3].

(3) RDMA deployments require advanced network config-
uration and have severe limitations. For example, earli-
est version of RDMA-over-Converged Ethernet (RoCE)
did not support L3-level routing. Although RoCEv2 re-
laxed this requirement, it needs lossless link-layer com-
munication to function. To achieve this, Data Center
Bridging (DCB) enhancements such as Priority Flow
Control (PFC), Explicit Congestion Notification (ECN)
and Enhanced Transmission Selection (ETS) must be
enabled on top of Ethernet. Large scale deployment of
RDMA is technically challenging and critical problems
such as Head-of-Line (HOL) blocking delays, network
deadlocks and livelocks have been reported by data-
center operators such as Microsoft [3]. Newer version
of RDMA called Resilient RoCE has been marketed by
vendors such as Mellanox which is designed to run on
lossy Ethernet topologies. However, as shown by [10],
Resilient RoCE is not successful in avoiding packet
losses across all realistic scenarios with dynamic traf-
fic patterns.

We propose a software-based RDMA verbs [11] imple-
mentation that uses TAS - high-performance user-space TCP
stack - as the underlying transport layer [5]. This approach
eliminates the kernel crossing overhead associated with
other software-based implementations such as SoftiWarp[9],
and potentially enables zero-copy network transfer to user
applications. Another advantage with our approach is that it
can work on top of existing network infrastructure. Specifi-
cally, our goals are:

(1) Design a software layer to support RDMA program-
ming model on top of TAS

(2) Evaluate if a purely software-based approach can
achieve near-hardware performance



Shailesh Mani Pandey and Rajath Shashidhara

Figure 1: RDMA stack. RDMA allows devices to perform di-
rect memory to memory transfers at the application level
without involving the host CPU. Both the transport pro-
cessing and the memory translation and placement are per-
formed by hardware resulting in lower latency and higher
throughput. Figure credits: [1]

2 BACKGROUND
Remote Direct Memory Access (RDMA) allows application
on one machine to access the memory of an application on a
remote machine without involving the kernel on either side.
This avoids the overheads associated with kernel crossings.
Current implementations of RDMA use specialized RDMA
Network Interface Controllers (RNIC) to directly write data
from the wire to the application memory (and vice versa). By
offloading to the hardware and thus removing CPU from the
data transfer path, this enables high-throughput, low-latency
networking. RDMA enables access to a previously registered
application memory region without kernel or application
involvement. These memory registrations are stored in mem-
ory translation and protection tables (MTPT). The RNICs use
these tables to directly access the application memory for
writing the incoming data or reading the outgoing data.[12]

The RDMA Protocol Verbs Specification [4] lists the op-
erations supported by the RDMA protocol, which include
RDMA Read, RDMA Write, Send and Receive. In this work,
we focus on the RDMAWrite, and RDMA Read operations.
The consumer that intends to use these RDMA operations
registers a memory region with the RNIC and sets up work
queues, and completion queues. The consumer then posts
Work Requests on the work queues which reference a local
and remote memory region and request reading data from
the remote to local memory region (RDMA Read) or writing
data to the remote from local memory region (RDMAWrite).
RNIC then completes the requested operation without the
involvement of the OS or the application and posts a Com-
pletion Queue Entry to the completion queue. To access the
memory on the remote side, the consumer has to provide a
remote access key which is shared out of band on connection
setup.

RDMA over Converged Ethernet (RoCE) is a network pro-
tocol frequently used to provide RDMA capabilities. As origi-
nally implemented and standardized by the InfiniBand Trade
Association (IBTA) RoCE was a layer 2 protocol. RoCE v2
is an extension of the RoCE framework that allows it to be
readily transported across layer 3 networks. As shown in
figure 1, a layer 3 capable RoCE v2 protocol simply continues
up the stack and adds a UDP header as a stateless encapsula-
tion of the layer 4 payload. RoCE v2 needs lossless link-layer
communication to function. To achieve this, Data Center
Bridging (DCB) enhancements such as Priority Flow Control
(PFC), Explicit Congestion Notification (ECN) and Enhanced
Transmission Selection (ETS) should be enabled on top of
Ethernet. Resilient RoCE is a version of RoCEv2 designed to
run on lossy Ethernet topologies using DCQCN congestion
control algorithm.

To support RDMA verbs in software while keeping the OS
out of the dataplane operations, we use TAS, TCP Accelera-
tion as a Software service. [5] TAS is a user space networking
stack that handles common-case TCP operation in an iso-
lated fast-path service which runs on dedicated CPUs, while
handling corner cases in a slow-path. To be workload propor-
tional, TAS dynamically allocates the appropriate amount of
CPUs to accommodate the fast-path, depending on the traffic
load. As shown in figure 2, TAS uses Receive-Side Scaling
(RSS) to get incoming data packets delivered to a fast-path
core. These messages are then written to the RX payload
buffer and the app is notified of the availability of more data.
Similarly, to send data across the network, the app writes
the message in the TX payload buffer and notifies fast-path
through a shared queue. Fast-path then reads these packets
from the buffer, adds TCP segment and packet headers, and
sends them over the wire.

For the control plane operations, such as connection setup,
the app directly coordinates with the slow-path. Slow-path
is also responsible for monitoring each flow, handling excep-
tions, and notifying the fast-path to adjust the flow rate. By
subdividing the TCP stack data plane into fast-path and slow-
path and dedicating separate threads to each, TAS achieves
throughput up to 7× that of Linux. Moreover, this approach
does not require new hardware and retains the flexibility
of a software implementation which is crucial for us. This
flexibility enables us to extend TAS to support RDMA verbs
over commodity hardware without the involvement of OS
in the data flow path.

3 DESIGN
This section elaborates on the system architecture, design
trade-offs and limitations of our implementation.



SRoCE: Software RDMA over Commodity Ethernet

Figure 2: TAS receive and send flow. The common case dataplane operations are handled by fast-path in user space while the
exceptions and other control plane operations are monitored by the slow-path. Figure credits: [5]

API Operation Behavior

rdma_init()

Initialize application library
Setup IPC and application context with TAS

Must be called before using any other RDMA functions

-

rdma_listen(localaddr, backlog)

Listen to RDMA connections on localaddr (ip, port)
Queue up to backlog pending SYN

Analogous to a wrapper around socket(), bind() and listen()

Asynchronous

rdma_accept(socket, *remoteaddr, *mr_base, *mr_len)

Accept an incoming RDMA connection on listener socket
Setup Memory Region (MR) for connection

Analogous to accept()

Blocking

rdma_connect(remoteaddr, *mr_base, *mr_len)

Connect to remote server at remoteaddr (ip, port)
Setup Memory Region (MR) for connection

Analogous to connect()

Blocking

rdma_read(socket, len, loffset, roffset)
Read len bytes of data from remote memory region at roffset
and copy to local memory region at loffset Asynchronous

rdma_write(socket, len, loffset, roffset)
Write len bytes of data from local memory region at loffset
and copy to remote memory region at roffset Asynchronous

rdma_completion_poll(socket, *events, num) Poll for completion of at most num read/write work requests Non-blocking
Asynchronous

Table 1: API definition

API
As RDMA verbs is a standardized API, aligning our imple-
mentation to remain compatible with the standards is ad-
vantageous as existing RDMA verbs applications need not
be modified. However, we choose to simplify implementa-
tion complexity by giving up application compatibility. We
have designed APIs which retain the essence of the RDMA
programming model but also allows us to work on top of
the TCP interface with minimal changes. Implementation
complexity is a major deal breaker in our design choices as
we had to tackle the challenge of implementing this system
under severe time constraints.
Table 1 lists the APIs and their semantics. To support

RDMA connection establishment, we augment the FreeBSD

sockets API. We modify the accept(), connect() to re-
ceive the memory region address and length. Moreover, our
APIs operate only in blocking mode and advanced socket
options are not supported. These modifications allow us to
retain the existing slow path implementation in TAS with
minimal changes such as allocating memory region and work
queues.

RDMA verbs provides a rich API with several variants of
read()/write() operations with both one-sided and two-
sided communication primitives, atomic operations, etc. We
only provide one-sided communication primitives in our API.
We have limited our problem scope as the other operations
are not fundamentally different and are trivial extensions
to the existing design. Finally, data transfer operations are
guaranteed to complete in-order of requests like RDMAverbs
operation.



Shailesh Mani Pandey and Rajath Shashidhara

Data transfer operations (read(), write(), poll()) are
always enabled i.e., they do not block for any reason. Read
and Write operations return immediately after the work
request is enqueued and return with an error code EAGAIN if
work queue is full. Similarly, poll dequeues elements present
in the completion queue without waiting for the requested
number of events to be completed. With this design, we lay
the responsibility on the user to poll for data transfer and
completion notifications. This design choice also allows full
flexibility to the application to overlap communication with
computation as it desires.

Architecture
Supporting RDMA abstraction over TCP requires 3 major
components:

• Framing:Work queue requests from the application
must be converted into messages transmitted on TCP
stream abstraction. We define a header structure to
frame themessages. On the transmission entity, header
is added along with the message into the TCP byte
stream. On the reception side, byte stream is parsed
to RDMA requests/responses to take appropriate ac-
tions. We rely on the in-order lossless delivery prop-
erties of TCP to ensure that messages do not get re-
ordered by the transport layer. In addition, RDMA re-
quest/responsemay bemuch larger than the TCP trans-
mission/reception buffer size. Framing entitymust take
care to copy the data in chunks ensuring that the buffer
is never overrun.

• Request processor:With one-sided communication
primitives, application on the receiving side is passive
and is completely oblivious to the ongoing data trans-
fer. We need an entity on the receiving side to process
the requests received from the remote peer. This pro-
cessing element also performs the copy to/from the
shared memory region into the TCP stream.

• Application Interface: Pendingwork queue requests
from the application must be transferred to TAS for
asynchronous processing. Similarly, application must
be notified of the completed requests.

We considered various interposition options as seen in
Figure 3. Option (a) shows the existing TAS architecture.
TAS is divided into slow path and multiple fast path cores.
Application interfaces with TAS through libTAS.

In option (b), TAS is treated as a black box TCP service
and RDMA processing is purely implemented as a part of the
application library. This option is the easiest to implement
as it requires no modifications to TAS. In addition, libRDMA
has access to full application memory and it is not necessary
to setup dedicated memory regions. However, due to the
passive nature of the receiver, an application thread within

the library is required to busy poll for RDMA requests from
the peer. Furthermore, an additional memcpy() is required to
transfer the data from application memory to TCP transmit
buffers in this design.
Option (c) represents the other end of the design spec-

trum where the TCP protocol and implementation inside
TAS are fused to support message-oriented communication
and scatter-gather transmission/reception directly from ap-
plication memory without maintaining explicit TCP trans-
mission/reception buffers. Although this option has the least
overhead, protocol design and implementation is extremely
complex.

In option (d), dedicated cores are reserved for RDMA pro-
cessing in TAS. rDMA cores translate the RDMA work re-
quests from the application into TCP stream by interfacing
with the fast path cores. This design requires minimal modi-
fications as there is a clean separation between the core TCP
implementation and rDMA processing. Moreover, we can
achieve pipeline parallelism and have minimum impact on
the performance of the TAS stack. However, additional cores
must be dedicated in this design. Moreover, an extra hop
between rDMA and fast path cores and memcpy() introduces
performance overheads.
In option (e), we add the rDMA processing functionality

within the fast path core. With this option, we can choose to
integrate the rDMA operation with fast path without disrupt-
ing the core TAS design. For example, by adding minimal
RDMA state to the flow state structure, we can gain perfor-
mance advantages due to cache efficiency of TAS. Further-
more, we also retain the auto-scaling feature of TAS - grow-
ing the number of fast path cores in response to increased
workload. We choose to keep the TCP buffers separate from
the RDMA work queue requests introducing additional over-
head due to an extra memcpy(). This option retains the core
benefits of TAS, has reasonable implementation complexity
and introduces small performance overheads. Therefore, we
choose this architecture for our implementation.

4 IMPLEMENTATION
As described in the previous section, our implementation
is divided into two parts, libRDMA and fast-path. To sim-
plify our implementation and have a working prototype in a
limited time, we make the following simplifying decisions:

(1) Instead of dynamic memory registration, each app gets
a pointer to a fixed length shared (with TAS fast-path)
memory region for each established connection.

(2) Applications that have established a connection have
access to each other’s shared memory region. Thus,
we do not implement any additional access control
mechanism.



SRoCE: Software RDMA over Commodity Ethernet

Figure 3: Design choices (a) Existing TAS design (b) Each app is linked with libRDMA which has a separate thread to process
RDMA (c) fastpath code is modified to integrate TCP and RDMA operations (d) App is linked with libRDMA and separate rDMA
cores are used to implement RDMA operations (e) Each app is linked with libRDMA and fastpath is modified to perform RDMA
functions.

(3) We only implement the RDMA write operation. We
believe that our design enables a simple extension to
other operations, such as RDMA read.

(4) We only support reliable connection mode (RC) and
do not implement the unreliable datagram (UD) oper-
ations.

libRDMA

First, we describe the implementation of libRDMA which
provides the APIs to initialize and establish connection, and
perform RDMA operations. The application must make a call
to rdma_init() before starting any RDMA operations. In
this call, we establish connection with TAS, register the app
context and initialize the internal data structures. To start
listening on a particular port, the application should make
a call to rdma_listen(). This is just a wrapper around the
listen API originally provided by TAS. For rdma_connect()
and rdma_accept(), we make a call to the slow-path which
is modified to allocate the shared memory region and work

/ completion queue in addition to the connection establish-
ment.

For the dataplane operations in the library, we first validate
the arguments passed to the API (e.g. the local and remote
offsets should be in the valid shared memory region). Then
we create a work queue entry for the request and write it
in the shared work queue. Once the entry is successfully
written in the work queue, we notify the fast path about the
presence of an additional work request. The API returns only
after both these operations complete. It is the application’s
responsibility to call rdma_completion_poll to check for
the completion of a previously submitted request. In this
call, we check for any notifications from the fast path about
completion of a request. If a notification is pending, we read
that and copy the completed work queue entries to the buffer
provided by application. This call only checks once for the
presence of a notification and thus gives the application the
ability to check occasionally and continue with some other
useful work in the meantime. This also enables applications



Shailesh Mani Pandey and Rajath Shashidhara

to be in control of the number of total operations in progress
at any moment.

Fast-path
Originally, fast-path expects data to be present in the TX
buffer on receiving a notification from the application. We
modified the fast path to rather expect an entry in the connec-
tion’s work queue. Now, fast path first adds a RDMA header
for each work queue entry and then copies the header as
well as the data from the specified memory region to the
TX buffer for that connection. If TX buffer does not have
enough space to hold the entire message and headers, we
write partial data to it and keep state to track the data which
is yet to be sent. On receiving an acknowledgement for each
TCP message, fast path frees up space in the TX buffer. We
modify fast path to process the pending work queue entries
when more space becomes available in the TX buffer. Once
the entire data is sent, the status of the work queue request is
modified to reflect that the request data is sent to the remote
node but a response is pending. After an RDMA response
is received from the remote node, we update the status of
the request entry to reflect that it has completed, and notify
the application. To avoid an extra copy of work queue entry,
we merge the work queue and completion queue. Hence, the
application is just notified of the index of the latest work
queue entry that has completed.

On receiving data from the remote node, fast path would
normally write the data to RX buffer, send back an acknowl-
edgment and notify the application. In our implementation,
like RDMA specification, the target application is never no-
tified and it can in fact be sleeping or be in the scheduler’s
wait queue. First, the initial 16 bytes of data are parsed as
the RDMA header and then the following data is written
to the application’s memory in the offset mentioned in the
header. After this copy has completed, an RDMA comple-
tion response is sent back to the remote node. To send these
RDMA responses, we put them in a response queue and then
multiplex between the response queue and the work queue
for that connection.
Although we only implement RDMA write operation in

our current prototype, we believe that extending it to sup-
port RDMA read operation should have a complementary
work flow and thus would be fairly straight forward. In addi-
tion, we expect our implementation to be easily extensible to
dynamic memory regions with access control. However, ex-
tending this to support unreliable datagram (UD) operations
using TAS may require substantial effort.

Source Code
The changes that we made to TAS app library, fast-path,
slow-path and our evaluation tests are available publicly at
https://github.com/mani-shailesh/rdma-tas.

5 EVALUATION
We conduct all our evaluation experiments on two lab ma-
chines connected via a Netberg Aurora 720 100 Gbps switch.
Each lab machine houses two Intel(R) Xeon(R) Gold 6154
CPU @ 3.00GHz processors for a total of 72 CPU cores. Both
machines have 187 GB of main memory, 32 KB of L1d and
L1i cache each, 1 MB of L2 cache, and 25 MB of L3 cache. We
also set up 4096 huge pages of size 2MB each for running
TAS on each machine. Both these machines run Linux and
have an RDMA enabled Mellanox ConnectX-5 100Gbps NIC
that we use for our experiments. We fix the CPU frequency
to 3.0Ghz and disable on-demand frequency scaling when
performing the experiment.
Figure 4 shows the throughput and latency of our imple-

mentation compared to the hardware based RDMA for one
connection as we vary the message size. For both these mea-
surements, the maximum number of in-flight messages was
set to 500. For smaller message sizes, our implementation
provides higher single-connection throughput than the tradi-
tional hardware based implementation with similar latency.
However, as the message size increases, the throughput of
our implementation saturates, and latency increases while
the hardware implementation provides higher throughput
and maintains the low latency. We attribute this increase in
latency and drop in throughput with the increase in message
size to the overhead added by an extra copy of data from the
memory region to the TCP transmission buffer. This over-
head increases with the message size and thus leads to worse
performance with higher message sizes.

For our next experiment, we analyze the performance with
varying number of maximum allowed in-flight messages. We
keep the message size fixed at 4096 bytes and measure the
single-connection throughput and latency achieved by our
implementation as well as by hardware based RDMA. As seen
in figure 5, the throughput of our implementation initially
benefits from increasing the number of messages in-flight
because this allows us to pipeline the steps in our software
stack such as writing requests to the work queue and copy-
ing data into transaction buffer with the actual transmission
of messages over the wire. With more than 4 pipelined mes-
sages, we achieve the single-connection throughput of more
than 20 Gbps as opposed to around 10 Gbps by the hard-
ware RDMA implementation. Although the throughput of
our implementation increases, we get this boost at the cost of
higher latency. As more messages are in-flight, the average
delay between the time of writing a request and the time
that fast path actually reads and transmits it is increased.
Thus, although we transfer more messages in aggregate,
each individual request has to wait longer on average in the
work queue and then in the transmission buffer. Once again,

https://github.com/mani-shailesh/rdma-tas


SRoCE: Software RDMA over Commodity Ethernet

Figure 4: Throughput and Latency measured as a function of RDMA_WRITE size.

Figure 5: Throughput and Latency measured as a function of number of pipelined messages.

the hardware implementation of RDMA maintains the low
latency.

Figure 6 shows the effect of increasing the number of con-
nections while keeping the other parameters constant. We
keep the message size fixed at 4096 bytes and the number
of maximum allowed in-flight messages at 500. It must be
noted that in all these experiments, TAS was run with just 1
fast-path core. Hence, as we run our RDMA implementation
with multiple connections, we increase the amount of state
that we have to maintain in the software and at the same
time TAS fast path core has to multiplex between different

connections. This adversely affects both the throughput and
the latency of our implementation. On the other hand, the
throughput of hardware implementation scales well with the
increase in number of connections. It benefits from the paral-
lel data transfer and hardware-enabled application memory
access. The hardware implementation achieves nearly 70
Gbps of throughput with minimal increase in latency with
10 connections. Even with the hardware implementation,
increasing the number of connections beyond 10 does not
help with the throughput and adversly affects the latency.



Shailesh Mani Pandey and Rajath Shashidhara

Figure 6: Throughput and Latency measured as a function of number of connections.

The single-connection throughput and latency achieved by
our implementation indicate that providing RDMA interface
over TCP using commodity NICs is not only feasible but
also comparable to the hardware implementation. Using a
fast user-space TCP stack, like TAS, we are able to eliminate
OS from the common data path and avoid the associated
overhead. We believe that the current challenge we face
with running multiple fast-path cores significantly limits our
ability to scale well with the number of connections. This,
and more such challenges that we face are described in detail
next.

Challenges
(1) Mellanox RDMA NIC setup and configuration:

Getting RDMA to work was a tedious, confusing and
often hopeless task. Poor online support and documen-
tation made it extremely hard for us to get the RDMA
up and running. Firstly, Mellanox OFED drivers are
not compatible with Debian 10 OS which was run-
ning on our experimental infrastructure. After getting
past this barrier, we were stuck on building DPDK Poll
Mode Drivers (PMD) support for Mellanox NICs. We
discovered that the drivers provided by the Mellanox
package were obsolete and incompatible with DPDK.
After days of fiddling with OS and switch configura-
tion and countless hacks, we were able to stabilize our
experimental infrastructure.

(2) Erratic behaviour TAS with Mellanox NICs: We
encountered a host of problems with running TAS on
our experiment setup.

• Auto-scaling and switching to interrupt mode fea-
tures of TAS are not compatiblewithMellanoxDPDK
Poll Mode Driver (PMD).

• We were unable to reproduce line rate with TAS us-
ing the echo benchmark test suite on our setup. We
tuned several parameters including number of TAS
fast-path cores, transmission message size, number
of connections, number of in-flight messages, ap-
plication cores, TCP buffer size, congestion control
algorithm and other advanced NIC options such as
Priority Flow Control, NIC ring buffer size, receive
and transmit offloads. Our best settings yielded only
13Gbps throughput with TAS and in comparison
Linuxwas able to achieve 37Gbps on the same bench-
mark.

• Unexplained drastic throughput drops after running
steadily for severalminutes at high throughput. Once
the throughput drops, it slowly decays to 0.

• Running with more than 1 TAS fast-path core de-
grades the throughput of a single connection. Each
flow is exclusively handled by a fast-path core. Adding
more cores should help us with scaling to more con-
nections. We observe the opposite behaviour as seen
in Table 2.

• NIC statistics obtained from ethtool do not match
with TAS level aggregate statistics. For instance, we
observed that the aggregate TAS throughput (new
transmission + retransmission) was about 145Kbps,
but the throughput at the NIC physical layer as re-
ported by ethtool was 37Gbps.



SRoCE: Software RDMA over Commodity Ethernet

Connections Throughput (Mbps)
1 FP core 2 FP cores

1 20184.53 1085.05
2 19234.88 1089.85
4 18661.75 11165.04
8 19262.18 12080.69
16 18138.48 13029.52
32 18654.46 13301.79
64 16749.93 14169.75

Table 2: Anomalous behavior with FP cores

• TCP Congestion Control makes the traffic fluctuate
wildly. When congestion control is disabled (no rate
limits on the flow), throughput is steady and drops
are small.

If these problems are fixed, we expect our implementa-
tion to perform much better and scale to higher num-
ber of connections. Furthermore, having a stable setup
will help us identify and eliminate bottlenecks in our
implementation in a reliable way.

6 RELATEDWORK
iWARP is an alternative to RoCEv2 that implements RDMA
verbs API support over TCP/IP stack. However, iWARP is
implemented in hardware and therefore suffers from all of
the limitations of hardware based solutions mentioned in the
motivation of our paper. We refer the reader to [6, 10] for
a detailed comparison. SoftiWARP implements the iWARP
stack as a patch to the linux kernel[9]. This solution incurs
the cost of kernel crossing and the message copy with this
solution and is not designed to be provide high performance.
[7] also implements RDMA verbs support in user-space

using DPDK. But, this solution develops its own reliability
protocol called Trivial Reliability Protocol (TRP) instead of
using TCP. TRP may be incompatible with existing network
hardware as switches and firewalls snoop on the packet
header information and actively block any unknown pro-
tocols. Furthermore, TCP is a reliable and most widely de-
ployed network protocol. Implementing RDMA verbs on top
of TCP enables us to take advantage of correctness and sta-
bility guarantees of TCP. In addition, our implementation
can be modified to support both TCP and RDMA interfaces
on top of TAS and this is an added advantage. Finally, TAS is
highly optimized for datacenter networks and RDMA deploy-
ments in datacenters can take benefit from the performance
optimizations of TAS by using our solution.

7 ACKNOWLEDGEMENTS
We would like to thank Prof. Simon Peter and Tim Stamler
for the lab infrastructure, providing necessary background

on TAS and helping us with issues we faced in setting up
TAS on Mellanox NICs.

8 CONCLUSION
Current implementations of the RDMA semantics use special-
ized hardware and pose many restrictions on the underlying
network. We propose a software-based implementation of
these semantics using TAS, a fast user-space networking
stack. We avoid the overheads imposed by OS and provide
the flexibility of software implementation. We show that the
performance of our software-based prototype is comparable
to that of specialized hardware. We mention the challenges
that need to be solved and believe that a scalable software-
based implementation of the highly effective RDMA interface
is a potential avenue of future work.

REFERENCES
[1] 2019 (accessed December 9, 2019). RoCE v2 Considerations. https:

//community.mellanox.com/s/article/roce-v2-considerations
[2] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown,

Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George
Varghese, et al. 2014. P4: Programming protocol-independent packet
processors. ACM SIGCOMM Computer Communication Review 44, 3
(2014), 87–95.

[3] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni, Jianxi Ye, Jitu
Padhye, and Marina Lipshteyn. 2016. RDMA over commodity ethernet
at scale. In Proceedings of the 2016 ACM SIGCOMM Conference. ACM,
202–215.

[4] Jim Pinkerton Renato Recio JeffHilland, Paul Culley. 2003. RDMAProto-
col Verbs Specification. Technical Report. http://www.rdmaconsortium.
org/home/draft-hilland-iwarp-verbs-v1.0-RDMAC.pdf

[5] Antoine Kaufmann, Tim Stamler, Simon Peter, Naveen Kr. Sharma,
Arvind Krishnamurthy, and Thomas Anderson. 2019. TAS: TCP Ac-
celeration As an OS Service. In Proceedings of the Fourteenth EuroSys
Conference 2019 (EuroSys ’19). ACM, New York, NY, USA, Article 24,
16 pages. https://doi.org/10.1145/3302424.3303985

[6] John Kim, Tim Lusting, and Fred Zhang. 2018. RoCE vs iWARP. https:
//www.snia.org/sites/default/files/ESF/RoCE-vs.-iWARP-Final.pdf

[7] Patrick MacArthur. 2017. Userspace RDMA Verbs on Commodity
Hardware Using DPDK. In 2017 IEEE 25th Annual Symposium on High-
Performance Interconnects (HOTI). IEEE, 103–110.

[8] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar,
Larry Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner.
2008. OpenFlow: enabling innovation in campus networks. ACM
SIGCOMM Computer Communication Review 38, 2 (2008), 69–74.

[9] Bernard Metzler, Fredy Neeser, and Philip Frey. 2009. Softiwarp. In
Open Fabrics Alliance Sonoma Workshop.

[10] Radhika Mittal, Alexander Shpiner, Aurojit Panda, Eitan Zahavi,
Arvind Krishnamurthy, Sylvia Ratnasamy, and Scott Shenker. 2018.
Revisiting network support for rdma. In Proceedings of the 2018 Confer-
ence of the ACM Special Interest Group on Data Communication. ACM,
313–326.

[11] P. Culley J. Hilland D. Garcia R. Recio, B. Metzler. 2007. A Remote
Direct Memory Access Protocol Specification. RFC 5040. https://tools.
ietf.org/html/rfc5040

[12] Renato Recio. 2006. A Tutorial of the RDMA Model. Technical Re-
port. https://www.hpcwire.com/2006/09/15/a_tutorial_of_the_rdma_
model-1/

https://community.mellanox.com/s/article/roce-v2-considerations
https://community.mellanox.com/s/article/roce-v2-considerations
http://www.rdmaconsortium.org/home/draft-hilland-iwarp-verbs-v1.0-RDMAC.pdf
http://www.rdmaconsortium.org/home/draft-hilland-iwarp-verbs-v1.0-RDMAC.pdf
https://doi.org/10.1145/3302424.3303985
https://www.snia.org/sites/default/files/ESF/RoCE-vs.-iWARP-Final.pdf
https://www.snia.org/sites/default/files/ESF/RoCE-vs.-iWARP-Final.pdf
https://tools.ietf.org/html/rfc5040
https://tools.ietf.org/html/rfc5040
https://www.hpcwire.com/2006/09/15/a_tutorial_of_the_rdma_model-1/
https://www.hpcwire.com/2006/09/15/a_tutorial_of_the_rdma_model-1/

	Abstract
	1 Introduction
	2 Background
	3 Design
	API
	Architecture

	4 Implementation
	libRDMA
	Fast-path
	Source Code

	5 Evaluation
	Challenges

	6 Related Work
	7 Acknowledgements
	8 Conclusion
	References

